Double Wieferich Pairs and Circulant Hadamard Matrices

نویسندگان

  • BROOKE LOGAN
  • MICHAEL J. MOSSINGHOFF
چکیده

We show that all but 4489 integers n with 4 < n ≤ 4 ·1030 cannot occur as the order of a circulant Hadamard matrix. Our algorithm allows us to search 10000 times farther than prior efforts, while substantially reducing memory requirements. The principal improvement over prior methods involves the incorporation of a separate search for double Wieferich prime pairs {p, q}, which have the property that pq−1 ≡ 1 mod q2 and qp−1 ≡ 1 mod p2.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wieferich pairs and Barker sequences

We show that if a Barker sequence of length n > 13 exists, then either n = 189 260 468 001 034 441 522 766 781 604, or n > 2 · 1030. This improves the lower bound on the length of a long Barker sequence by a factor of more than 107. We also show that all but fewer than 1600 integers n ≤ 4 ·1026 can be eliminated as the order of a circulant Hadamard matrix. These results are obtained by completi...

متن کامل

Wieferich Pairs and Barker Sequences, Ii

We show that if a Barker sequence of length n > 13 exists, then either n = 3 979 201 339 721 749 133 016 171 583 224 100, or n > 4 · 1033. This improves the lower bound on the length of a long Barker sequence by a factor of nearly 2000. We also obtain 18 additional integers n < 1050 that cannot be ruled out as the length of a Barker sequence, and find more than 237000 additional candidates n < ...

متن کامل

Hadamard ideals and Hadamard matrices with two circulant cores

We apply Computational Algebra methods to the construction of Hadamard matrices with two circulant cores, given by Fletcher, Gysin and Seberry. We introduce the concept of Hadamard ideal for this construction to systematize the application of Computational Algebra methods. Our approach yields an exhaustive search construction of Hadamard matrices with two circulant cores for this construction f...

متن کامل

Weaknesses in Hadamard Based Symmetric Key Encryption Schemes

In this paper security aspects of the existing symmetric key encryption schemes based on Hadamard matrices are examined. Hadamard matrices itself have symmetries like one circulant core or two circulant core. Here, we are exploiting the inherent symmetries of Hadamard matrices and are able to perform attacks on these encryption schemes. It is found that entire key can be obtained by observing t...

متن کامل

A Note on the Circulant Hadamard Conjecture

This note reports work in progress in connection with Ryser’s conjecture on circulant Hadamard matrices.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015